All Issue

2020 Vol.19, Issue 4 Preview Page

Research Article

December 2020. pp. 65-74
ASTM D4648M-16. (2016), Standard test methods for laboratory miniature vane shear test for saturated fine-grained clayey soil.
EFNARC, A. (2005), Specifications and Guidelines for the use of specialist products for Mechanized Tunnelling (TBM) in Soft Ground and Hard Rock, Recommendation of European Federation of Producers and Contractors of Specialist Products for Structures.
Galli, M. (2016), Rheological characterisation of earth-pressure-balance (EPB) support medium composed of non-cohesive soils and foam. Ph.D Thesis.
Itasca. (2019), Particle Flow Code in 3 Dimensions (PFC3D) 6.0 documentation, Minneapolis: Itasca Consulting Group.
Karmakar, S., and Kushwaha, R. L. (2007), “Development and laboratory evaluation of a rheometer for soil visco-plastic parameters”, Journal of Terramechanics, Vol.44, No.2, pp. 197-204. 10.1016/j.jterra.2006.10.002
Langmaack, L. (2000), “Advanced technology of soil conditioning in EPB shield tunnelling”, proceedings of North American tunneling, 2000, pp.525-542.
Lee, H., Shin, D., Kim, D. Y., Shin, Y. J. and Choi, H. (2019), “Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand”, Journal of Korean Tunnelling and Underground Space Association, Vol.21, No.4, pp.545-560.
Maidl, U. (1995), Einsatzbereiche der Erddruckschilde durch Bodenkonditionierung mit Schaum, Ph.D Thesis, Institut für Konstruktiven Ingenieurbau. (in german)
Mechtcherine, V. and Shyshko, S. (2015), “Simulating the behaviour of fresh concrete with the Distinct Element Method-Deriving model parameters related to the yield stress”, Cement and Concrete Composites, Vol.55, pp.81-90. 10.1016/j.cemconcomp.2014.08.004
Messerklinger, S., Zumsteg, R. and Puzrin, A. M. (2011), “A new pressurized vane shear apparatus”, Geotechnical Testing Journal, Vol.34, No.2, pp.112-121. 10.1520/GTJ103175
Peila, D., Oggeri, C. and Borio, L, (2009), “Using the slump test to assess the behavior of conditioned soil for EPB tunneling”, Environmental & Engineering Geoscience, Vol.15, No.3, pp.167-174. 10.2113/gseegeosci.15.3.167
Peila, D., Picchio, A. and Chieregato, A. (2013), “Earth pressure balance tunnelling in rock masses: Laboratory feasibility study of the conditioning process”, Tunnelling and Underground Space Technology, Vol.35, pp.55-66. 10.1016/j.tust.2012.11.006
Qu, T., Wang, S. and Hu, Q. (2019), “Coupled discrete element-finite difference method for analysing effects of cohesionless soil conditioning on tunneling behaviour of EPB shield”, KSCE Journal of Civil Engineering, Vol.23, No.10, pp.4538-4552. 10.1007/s12205-019-0473-8
Vinai, R., Oggeri, C. and Peila, D. (2008), “Soil conditioning of sand for EPB applications: A laboratory research” Tunnelling and Underground Space Technology, Vol.23, No.3, pp.308-317. 10.1016/j.tust.2007.04.010
Wu, L. and Qu, F. Z. (2009), “Discrete element simulation of mechanical characteristic of conditioned sands in earth pressure balance shield tunneling”, Journal of Central South University of Technology, Vol.16, No.6, pp.1028. 10.1007/s11771-009-0170-8
  • Publisher :Korean Geosythetics Society
  • Publisher(Ko) :한국지반신소재학회
  • Journal Title :Journal of the Korean Geosynthetics Society
  • Journal Title(Ko) :한국지반신소재학회 논문집
  • Volume : 19
  • No :4
  • Pages :65-74
  • Received Date :2020. 11. 19
  • Revised Date :2020. 12. 07
  • Accepted Date : 2020. 12. 09