All Issue

2025 Vol.24, Issue 1 Preview Page

Research Article

30 March 2025. pp. 89-100
Abstract
References
1

Baghbani, A., Choudhury, T., Costa, S. and Reiner, J. (2022), "Application of Artificial Intelligence in Geotechnical Engineering: A State-of-the-Art Review", Earth-Science Reviews, Vol.228, 103991.

10.1016/j.earscirev.2022.103991
2

Carpenter, C. (2020), "Machine-Learning Image Recognition Enhances Rock Classification", Journal of Petroleum Technology, Vol.72, No.10, pp.63-64.

10.2118/1020-0063-JPT
3

Chen, J., Yang, T., Zhang, D., Huang, H. and Tian, Y. (2021), "Deep Learning Based Classification of Rock Structure of Tunnel Face", Geoscience Frontiers, Vol.12, No.1, pp.395-404.

10.1016/j.gsf.2020.04.003
4

De Lima, R. P., Bonar, A., Coronado, D. D., Marfurt, K. and Nicholson, C. (2019), "Deep Convolutional Neural Networks as a Geological Image Classification Tool", The Sedimentary Record, Vol.17, No.2, pp.4-9.

10.2110/sedred.2019.2.4
5

Fernandez-Gutierrez, J. D., Rodriguez, S. S., Gonzalo-Orden, H. and Perez-Acebo, H. (2021), "Analysis of Rock Mass Classifications for Safer Infrastructures", Transportation Research Procedia, Vol.58, pp.606-613.

10.1016/j.trpro.2021.11.080
6

Hasegawa, N., Hasegawa, S., Kitaoka, T. and Ohtsu, H. (2019), "Applicability of Neural Network in Rock Classification of Mountain Tunnel", Materials Transactions, Vol.60, No.5, pp.758-764.

10.2320/matertrans.Z-M2019809
7

He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep Residual Learning for Image Recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778.

10.1109/CVPR.2016.90
8

Howard, A. G. (2017), "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", arXiv preprint, arXiv:1704.04861.

9

Kim, N., Sim, J., Won, J. P. and Shim, J. W. (2005), "An Experimental Study of Polypropylene Fiber for the Prevention of Explosive Spalling of Tunnel Concrete Lining", Journal of Korean Tunnelling and Underground Space Association, Vol.7, No.4, pp.323-333.

10

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012), "ImageNet Classification with Deep Convolutional Neural Networks", Advances in Neural Information Processing Systems, Vol.25.

11

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), "Gradient-Based Learning Applied to Document Recognition", Proceedings of the IEEE, Vol.86, No.11, pp.2278-2324.

10.1109/5.726791
12

Liu, W., Li, A., Fang, W., Love, P. E., Hartmann, T. and Luo, H. (2023), "A Hybrid Data-Driven Model for Geotechnical Reliability Analysis", Reliability Engineering & System Safety, Vol.231, 108985.

10.1016/j.ress.2022.108985
13

Młynarczuk, M., Górszczyk, A. and Ślipek, B. (2013), "The Application of Pattern Recognition in the Automatic Classification of Microscopic Rock Images", Computers & Geosciences, Vol.60, pp.126-133.

10.1016/j.cageo.2013.07.015
14

Moon, B. C., Jeong, J. and Chung, C. H. (2005), "The Classifying Ability of the Igneous Rocks with Naked Eyes for Preservice Science Teachers", Journal of the Korean Earth Science Society, Vol.26, No.7, pp.630-639.

15

Ng, A. Y. (2004), "Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance", Proceedings of the Twenty-First International Conference on Machine Learning, p.78.

10.1145/1015330.1015435
16

Ran, X., Xue, L., Zhang, Y., Liu, Z., Sang, X. and He, J. (2019), "Rock Classification from Field Image Patches Analyzed Using a Deep Convolutional Neural Network", Mathematics, Vol.7, No.8, 755.

10.3390/math7080755
17

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L. (2018), "MobileNetV2: Inverted Residuals and Linear Bottlenecks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.4510-4520.

10.1109/CVPR.2018.00474
18

Sun, Y. and Gu, Z. (2022), "Using Computer Vision to Recognize Construction Material: A Trustworthy Dataset Perspective", Resources, Conservation and Recycling, Vol.183, 106362.

10.1016/j.resconrec.2022.106362
19

Tan, M. and Le, Q. (2019), "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", Proceedings of the International Conference on Machine Learning, PMLR, pp.6105-6114.

Information
  • Publisher :Korean Geosythetics Society
  • Publisher(Ko) :한국지반신소재학회
  • Journal Title :Journal of the Korean Geosynthetics Society
  • Journal Title(Ko) :한국지반신소재학회 논문집
  • Volume : 24
  • No :1
  • Pages :89-100
  • Received Date : 2025-01-08
  • Revised Date : 2025-02-16
  • Accepted Date : 2025-03-12